Larger transfers financed with more progressive taxes? On the optimal design of taxes and transfers

Axelle Ferriere¹ Philipp Grübener²
Gaston Navarro³ Oliko Vardishvili⁴

¹PSE & CNRS

²Goethe University Frankfurt

³Federal Reserve Board

⁴Yale University

November 2021

These views are those of the authors and not necessarily those of the Board of Governors or the Federal Reserve System.

Redistribution in the U.S.

■ Taxes and transfers are two key components in the U.S. fiscal system

- Working-age households ranked by income quintiles (CBO, 2013) Data

1/33

■ How should a government design a tax-and-transfer system to reduce inequality while preserving efficiency?

■ A Ramsey approach

- A Ramsey approach
 - Rich quantitative macro model

- A Ramsey approach
 - Rich quantitative macro model
 - A flexible set of instruments: progressive taxes & targeted transfers

- A Ramsey approach
 - Rich quantitative macro model
 - A flexible set of instruments: progressive taxes & targeted transfers
- Two questions

■ How should a government design a tax-and-transfer system to reduce inequality while preserving efficiency?

■ A Ramsey approach

- Rich quantitative macro model
- A flexible set of instruments: progressive taxes & targeted transfers

■ Two questions

- Analytical: How should tax progressivity change with more generous transfers?

■ How should a government design a tax-and-transfer system to reduce inequality while preserving efficiency?

■ A Ramsey approach

- Rich quantitative macro model
- A flexible set of instruments: progressive taxes & targeted transfers

■ Two questions

- Analytical: How should tax progressivity change with more generous transfers?
- Quantitative: How generous should transfers be? How progressive should taxes be?

Theoretical analysis

- Simple model with progressive income tax scheme & a transfer
 - HSV: Heathcote, Storesletten, and Violante (2017)
 - Loglinear income tax with progressivity au and a lump-sum T

Theoretical analysis

- Simple model with progressive income tax scheme & a transfer
 - HSV: Heathcote, Storesletten, and Violante (2017)
 - Loglinear income tax with progressivity au and a lump-sum T
- lacksquare Local approximations around T=0 to get a closed-form for welfare
 - Optimal negative relationship between T and $\boldsymbol{\tau}$
 - Due to both redistribution and efficiency concerns

Theoretical analysis

- Simple model with progressive income tax scheme & a transfer
 - HSV: Heathcote, Storesletten, and Violante (2017)
 - Loglinear income tax with progressivity au and a lump-sum T
- lacktriangle Local approximations around T=0 to get a closed-form for welfare
 - Optimal negative relationship between T and au
 - Due to both redistribution and efficiency concerns

⇒ **Optimal** fiscal plan features large **average** but low **marginal** progressivity

- Standard heterogeneous-agent model augmented with:
 - Rich earnings dynamics: Pareto tail and GMAR process
 - (Heterogeneous discount factors)

- Standard heterogeneous-agent model augmented with:
 - Rich earnings dynamics: Pareto tail and GMAR process
 - (Heterogeneous discount factors)
- New and flexible fiscal functions
 - Non-negative progressive income tax: level & curvature
 - Targeted transfers: level & speed of phasing-out

- Standard heterogeneous-agent model augmented with:
 - Rich earnings dynamics: Pareto tail and GMAR process
 - (Heterogeneous discount factors)
- New and flexible fiscal functions
 - Non-negative progressive income tax: level & curvature
 - Targeted transfers: level & speed of phasing-out

Optimal policy

- Generous transfers, up to \$27k, with a slow phasing-out
- Moderately progressive income tax schedule

- Standard heterogeneous-agent model augmented with:
 - Rich earnings dynamics: Pareto tail and GMAR process
 - (Heterogeneous discount factors)
- New and flexible fiscal functions
 - Non-negative progressive income tax: level & curvature
 - Targeted transfers: level & speed of phasing-out

Optimal policy

- Generous transfers, up to \$27k, with a slow phasing-out
- Moderately progressive income tax schedule
- => Large welfare gains!

Literature

■ Evolution of inequality and taxation in the US

Piketty and Saez (2003), Piketty and Saez (2007), Piketty, Saez, and Zucman (2017), Splinter (2020)

■ Parametric tax functions: Empirical estimates

Gouveia and Strauss (1994), Guner, Kaygusuz, and Ventura (2014), Feenberg, Ferriere, and Navarro (2020)

Analytical frameworks to evaluate optimal tax progressivity

Heathcote, Storesletten, and Violante (2014, 2017)

Quantitative frameworks to evaluate optimal tax progressivity

Bakış, Kaymak, and Poschke (2015), Guner, Lopez-Daneri, and Ventura (2016), Krueger and Ludwig (2016), Peterman (2016), Kindermann and Krueger (2021), Boar and Midrigan (2021), Guner, Kaygusuz and Ventura (2021)

■ Intersection of Ramsey (1927) and Mirrlees (1971) traditions

Findeisen and Sachs (2017), Heathcote and Tsujiyama (2021)

An Analytical Model

■ No capital, representative firm with linear production in labor

- No capital, representative firm with linear production in labor
- A utilitarian government
 - Raises loglinear taxes: $\mathcal{T}(y) = y \lambda y^{1- au}$
 - Budget: $G + T = \int y_{it} di \lambda \int y_{it}^{1- au} di$

- No capital, representative firm with linear production in labor
- A utilitarian government
 - Raises loglinear taxes: $\mathcal{T}(y) = y \lambda y^{1- au}$
 - Budget: $G + {\color{black} T} = \int y_{it} di \lambda \int y_{it}^{1-\tau} di$
- A continuum of infinitely-lived workers
 - Wages AR(1): $\log z_{it} = \rho_z \log z_{it-1} + \omega_{it}$, with $\omega_{it} \sim \mathcal{N}\left(-\frac{v_\omega}{2(1+\rho_z)}, v_\omega\right)$

- No capital, representative firm with linear production in labor
- A utilitarian government
 - Raises loglinear taxes: $\mathcal{T}(y) = y \lambda y^{1- au}$
 - Budget: $G + T = \int y_{it} di \lambda \int y_{it}^{1-\tau} di$
- A continuum of infinitely-lived workers
 - Wages AR(1): $\log z_{it} = \rho_z \log z_{it-1} + \omega_{it}$, with $\omega_{it} \sim \mathcal{N}\left(-\frac{v_\omega}{2(1+\rho_z)}, v_\omega\right)$
 - Separable utility function: $\log c_{it} B \frac{n_{it}^{1+\varphi}}{1+\varphi}, \text{ with } \varphi \geq 1$

- No capital, representative firm with linear production in labor
- A utilitarian government
 - Raises loglinear taxes: $\mathcal{T}(y) = y \lambda y^{1- au}$
 - Budget: $G + T = \int y_{it} di \lambda \int y_{it}^{1-\tau} di$
- A continuum of infinitely-lived workers
 - Wages AR(1): $\log z_{it} = \rho_z \log z_{it-1} + \omega_{it}$, with $\omega_{it} \sim \mathcal{N}\left(-\frac{v_\omega}{2(1+\rho_z)}, v_\omega\right)$
 - Separable utility function: $\log c_{it} B \frac{n_{it}^{1+\varphi}}{1+\varphi}, \text{ with } \varphi \geq 1$
 - Hand-to-mouth workers: $c_{it} = \lambda (z_{it} n_{it})^{1-\tau} + T$

- No capital, representative firm with linear production in labor
- A utilitarian government
 - Raises loglinear taxes: $\mathcal{T}(y) = y \lambda y^{1- au}$
 - Budget: $G + T = \int y_{it} di \lambda \int y_{it}^{1-\tau} di$
- A continuum of infinitely-lived workers
 - Wages AR(1): $\log z_{it} = \rho_z \log z_{it-1} + \omega_{it}$, with $\omega_{it} \sim \mathcal{N}\left(-\frac{v_\omega}{2(1+\rho_z)}, v_\omega\right)$
 - Separable utility function: $\log c_{it} B \frac{n_{it}^{1+\varphi}}{1+\varphi}, \text{ with } \varphi \geq 1$
 - Hand-to-mouth workers: $c_{it} = \lambda (z_{it} n_{it})^{1-\tau} + T$
 - + Extension: uninsurable permanent + insurable iid shocks

- No capital, representative firm with linear production in labor
- A utilitarian government
 - Raises loglinear taxes: $\mathcal{T}(y) = y \lambda y^{1- au}$
 - Budget: $G + T = \int y_{it} di \lambda \int y_{it}^{1-\tau} di$
- A continuum of infinitely-lived workers
 - Wages AR(1): $\log z_{it} = \rho_z \log z_{it-1} + \omega_{it}$, with $\omega_{it} \sim \mathcal{N}\left(-\frac{v_\omega}{2(1+\rho_z)}, v_\omega\right)$
 - Separable utility function: $\log c_{it} B \frac{n_{it}^{1+\varphi}}{1+\varphi}, \text{ with } \varphi \geq 1$
 - Hand-to-mouth workers: $c_{it} = \lambda (z_{it} n_{it})^{1-\tau} + T$
 - + Extension: uninsurable permanent + insurable iid shocks
- \Rightarrow Next: 1) RA case $v_{\omega}=0$, 2) HA with T=0, and 3) HA with $T\neq 0$

- lacktriangle Representative agent $v_{\omega}=0$
- lacktriangle Optimal fiscal plan attains the first-best allocation $n^{\star}(G)$

$$n^{\star}(G)$$
 s.t. $Bn^{\varphi}(n-G)=1$

- \blacksquare Representative agent $v_{\omega}=0$
- lacktriangle Optimal fiscal plan attains the first-best allocation $n^{\star}(G)$

$$n^{\star}(G)$$
 s.t. $Bn^{\varphi}(n-G)=1$

lacksquare For any T, optimal au to implement the first-best given by

$$\tau(G,T) = \frac{-(G+T)}{n^*(G) - (G+T)}$$

- lacksquare Representative agent $v_{\omega}=0$
- lacktriangle Optimal fiscal plan attains the first-best allocation $n^{\star}(G)$

$$n^{\star}(G)$$
 s.t. $Bn^{\varphi}(n-G)=1$

lacksquare For any T, optimal au to implement the first-best given by

$$\tau(G,T) = \frac{-(G+T)}{n^*(G) - (G+T)}$$

▶ First Best

- If T=0, then $\tau=\tau_0^\star(G)<0$

- lacksquare Representative agent $v_{\omega}=0$
- lacktriangle Optimal fiscal plan attains the first-best allocation $n^{\star}(G)$

$$n^{\star}(G)$$
 s.t. $Bn^{\varphi}(n-G)=1$

 \blacksquare For any T , optimal τ to implement the first-best given by

$$\tau(G,T) = \frac{-(G+T)}{n^*(G)-(G+T)} \qquad \qquad \bullet \text{ First Best}$$

- If T=0, then $\tau=\tau_0^\star(G)<0$
 - \Rightarrow Transfers T>0 when $\tau<\tau_0^\star(G)$

- lacksquare Representative agent $v_{\omega}=0$
- lacktriangle Optimal fiscal plan attains the first-best allocation $n^{\star}(G)$

$$n^{\star}(G)$$
 s.t. $Bn^{\varphi}(n-G)=1$

lacksquare For any T, optimal au to implement the first-best given by

$$\tau(G,T) = \frac{-(G+T)}{n^*(G) - (G+T)}$$

- If T=0, then $\tau=\tau_0^\star(G)<0$
- \Rightarrow Transfers T>0 when $\tau< au_0^{\star}(G)$

Tax
$$T < 0$$
 when $\tau > \tau_0^{\star}(G)$

- lacksquare Representative agent $v_{\omega}=0$
- lacktriangle Optimal fiscal plan attains the first-best allocation $n^{\star}(G)$

$$n^{\star}(G)$$
 s.t. $Bn^{\varphi}(n-G)=1$

lacksquare For any T, optimal au to implement the first-best given by

$$\tau(G,T) = \frac{-(G+T)}{n^*(G) - (G+T)}$$

- If T=0, then $\tau=\tau_0^\star(G)<0$
 - \Rightarrow Transfers T>0 when $\tau<\tau_0^\star(G)$

$${\sf Tax} \qquad T<0 \ {\sf when} \ \tau>\tau_0^\star(G)$$

(retrieve
$$T = -G$$
 when $\tau = 0$)

- lacksquare Representative agent $v_{\omega}=0$
- lacktriangle Optimal fiscal plan attains the first-best allocation $n^{\star}(G)$

$$n^{\star}(G)$$
 s.t. $Bn^{\varphi}(n-G)=1$

lacktriangle For any T, optimal au to implement the first-best given by

$$\tau(G,T) = \frac{-(G+T)}{n^{\star}(G)-(G+T)} \qquad \qquad \text{First Best}$$

- If T=0, then $\tau=\tau_0^\star(G)<0$
 - \Rightarrow Transfers T>0 when $au< au_0^\star(G)$

Tax
$$T < 0$$
 when $\tau > \tau_0^{\star}(G)$

(retrieve
$$T = -G$$
 when $\tau = 0$)

- \Rightarrow **Negative** relationship between τ and T due to **efficiency** concerns
 - Efficiency gains of T are decreasing in au

No transfers Welfare as a function of progressivity au

No transfers Welfare as a function of progressivity τ

■ Policy function for labor is $n_{it} = [(1-\tau)/B]^{\frac{1}{1+\varphi}} \equiv n_0(\tau)$

No transfers Welfare as a function of progressivity au

- Policy function for labor is $n_{it} = [(1-\tau)/B]^{\frac{1}{1+\varphi}} \equiv n_0(\tau)$
- Compute Y, λ and c_{it} and obtain welfare in closed-form

No transfers Welfare as a function of progressivity au

- Policy function for labor is $n_{it} = [(1-\tau)/B]^{\frac{1}{1+\varphi}} \equiv n_0(\tau)$
- Compute Y, λ and c_{it} and obtain welfare in closed-form

$$\mathcal{W}(\tau) = \underbrace{\log \left(n_0(\tau) - G\right)}_{\text{Size}} \underbrace{-\frac{1 - \tau}{1 + \varphi}}_{\text{Labor disutility}} \underbrace{-(1 - \tau)^2 \frac{v_\omega}{2(1 - \rho_z^2)}}_{\text{Redistribution}}$$

- Two efficiency terms
 - Size term \downarrow with τ ; Labor disutility term \uparrow with τ

No transfers Welfare as a function of progressivity τ

- \blacksquare Policy function for labor is $n_{it} = [(1-\tau)/B]^{\frac{1}{1+\varphi}} \equiv n_0(\tau)$
- Compute Y, λ and c_{it} and obtain welfare in closed-form

- Two efficiency terms
 - Size term \downarrow with τ ; Labor disutility term \uparrow with τ
 - \Rightarrow When $v_{\omega}=0$, first-best $n^*(G)$ with $\tau_0^{\star}(G)$

No transfers Welfare as a function of progressivity au

- Policy function for labor is $n_{it} = [(1-\tau)/B]^{\frac{1}{1+\varphi}} \equiv n_0(\tau)$
- Compute Y, λ and c_{it} and obtain welfare in closed-form

- Two efficiency terms
 - Size term \downarrow with τ ; Labor disutility term \uparrow with τ
 - \Rightarrow When $v_{\omega}=0$, first-best $n^*(G)$ with $\tau_0^{\star}(G)$
- **Redistribution** term \uparrow with τ

Welfare without transfers Optimal τ

■ No spending, no heterogeneity: $\tau = 0$

▶ Calibration

Welfare without transfers Optimal τ

■ Positive spending, no heterogeneity: $\tau < 0$

Welfare without transfers Optimal τ

■ Spending, uninsurable shocks: $\tau > 0$

Transfers Welfare: Heterogeneous agents

■ Implicit function theorem: approximation of the FOC

$$\hat{n}_{it} \approx n_0(\tau) - \frac{T}{1+\varphi} \frac{n_0(\tau)}{n_0(\tau) - G} \exp\left(-\tau (1-\tau) \frac{v_\omega}{1-\rho_z^2}\right) z_{it}^{-(1-\tau)}$$

Transfers Welfare: Heterogeneous agents

■ Implicit function theorem: approximation of the FOC

$$\hat{n}_{it} \approx n_0(\tau) - \frac{T}{1+\varphi} \frac{n_0(\tau)}{n_0(\tau) - G} \exp\left(-\tau (1-\tau) \frac{v_\omega}{1-\rho_z^2}\right) z_{it}^{-(1-\tau)}$$

 \blacksquare Approximated formula with heterogeneity $v_\omega>0$

$$W(\tau, T) = W(\tau, 0) + T \left[\Omega^{e}(\tau, v_{\omega}) + \Omega^{r}(\tau, v_{\omega}) \right],$$

where the two terms capture

- Efficiency concerns
- Redistribution concerns ($\Omega^r(\tau, v_\omega) = 0$ when $v_\omega = 0$)

- \blacksquare Efficiency: $\Omega^e(\tau,v_\omega) = \Omega^{ra}_e(\tau) + \Omega^{ha}_e(\tau,v_\omega)$
- Representative-agent efficiency:

- Efficiency: $\Omega^e(\tau, v_\omega) = \Omega^{ra}_e(\tau) + \Omega^{ha}_e(\tau, v_\omega)$
- Representative-agent efficiency:

$$\Omega_e^{ra}(\tau) \equiv \underbrace{-\frac{n_0(\tau)}{n_0(\tau) - G} \frac{1}{1 + \varphi} \frac{1}{n_0(\tau) - G}}_{\text{Size } < \mathbf{0}} \underbrace{+\frac{1 - \tau}{1 + \varphi} \frac{1}{n_0(\tau) - G}}_{\text{Labor disutility } > \mathbf{0}}$$

$$= U_c(C_0(\tau)) \left. \frac{\partial Y^{ra}(\tau, T)}{\partial T} \right|_{T=0} + U_n(n_0(\tau)) \left. \frac{\partial n^{ra}(\tau, T)}{\partial T} \right|_{T=0}$$

- Efficiency: $\Omega^e(\tau, v_\omega) = \Omega^{ra}_e(\tau) + \Omega^{ha}_e(\tau, v_\omega)$
- Representative-agent efficiency:

$$\Omega_e^{ra}(\tau) \equiv \underbrace{-\frac{n_0(\tau)}{n_0(\tau) - G} \frac{1}{1 + \varphi} \frac{1}{n_0(\tau) - G}}_{\text{Size } < \mathbf{0}} \underbrace{+\frac{1 - \tau}{1 + \varphi} \frac{1}{n_0(\tau) - G}}_{\text{Labor disutility } > \mathbf{0}}$$

$$= U_c(C_0(\tau)) \left. \frac{\partial Y^{ra}(\tau, T)}{\partial T} \right|_{T=0} + U_n(n_0(\tau)) \left. \frac{\partial n^{ra}(\tau, T)}{\partial T} \right|_{T=0}$$

- $\Omega_e^{ra}=0$ when $au= au_0^\star(G)$, and decreases with au (first-best)
 - \rightarrow If $\tau < \tau_0^{\star}(G)$ then $\Omega_e^{ra} > 0$
 - $\rightarrow \mbox{ If } \tau > \tau_0^{\star}(G) \mbox{ then } \Omega_e^{ra} < 0$

- Efficiency: $\Omega^e(\tau, v_\omega) = \Omega^{ra}_e(\tau) + \Omega^{ha}_e(\tau, v_\omega)$
- Representative-agent efficiency:

$$\Omega_e^{ra}(\tau) \equiv \underbrace{-\frac{n_0(\tau)}{n_0(\tau) - G} \frac{1}{1 + \varphi} \frac{1}{n_0(\tau) - G}}_{\text{Size} < \mathbf{0}} \underbrace{+\frac{1 - \tau}{1 + \varphi} \frac{1}{n_0(\tau) - G}}_{\text{Labor disutility} > \mathbf{0}}$$

$$= U_c(C_0(\tau)) \left. \frac{\partial Y^{ra}(\tau, T)}{\partial T} \right|_{T=0} + U_n(n_0(\tau)) \left. \frac{\partial n^{ra}(\tau, T)}{\partial T} \right|_{T=0}$$

- $\Omega_e^{ra}=0$ when $au= au_0^\star(G)$, and decreases with au (first-best)
 - \rightarrow If $\tau < \tau_0^{\star}(G)$ then $\Omega_e^{ra} > 0$
 - $\rightarrow \text{ If } \tau > \tau_0^\star(G) \text{ then } \Omega_e^{ra} < 0$
- \Rightarrow Efficiency gains of T are decreasing in au

- Efficiency: $\Omega^e(\tau, v_\omega) = \Omega^{ra}_e(\tau) + \Omega^{ha}_e(\tau, v_\omega)$
- Representative-agent efficiency:

$$\Omega_e^{ra}(\tau) \equiv \underbrace{-\frac{n_0(\tau)}{n_0(\tau) - G} \frac{1}{1 + \varphi} \frac{1}{n_0(\tau) - G}}_{\text{Size } < \mathbf{0}} \underbrace{+\frac{1 - \tau}{1 + \varphi} \frac{1}{n_0(\tau) - G}}_{\text{Labor disutility } > \mathbf{0}}$$

$$= U_c(C_0(\tau)) \left. \frac{\partial Y^{ra}(\tau, T)}{\partial T} \right|_{T=0} + U_n(n_0(\tau)) \left. \frac{\partial n^{ra}(\tau, T)}{\partial T} \right|_{T=0}$$

- $\Omega_e^{ra}=0$ when $\tau=\tau_0^\star(G)$, and decreases with τ (first-best)
 - \rightarrow If $\tau < \tau_0^{\star}(G)$ then $\Omega_e^{ra} > 0$
 - \rightarrow If $\tau > au_0^{\star}(G)$ then $\Omega_e^{ra} < 0$
- \Rightarrow Efficiency gains of T are decreasing in τ
 - \blacksquare Additional efficiency Ω_e^{ha} term with heterogeneous agents \ldots numerically small

lacksquare Redistribution $\Omega^{ha}(au,v_\omega)$

 \blacksquare Redistribution $\Omega^{ha}(\tau,v_{\omega})$

$$\Omega_r(\tau, v_\omega) = \frac{(1-\tau)^2}{n_0(\tau) - G} \frac{v_\omega}{1 - \rho_z^2}$$
$$= \mathbb{E}\left[U_c(c_0(\tau))\right] - U_c(C_0(\tau))$$

- Positive as long as $v_{\omega}>0$ and decreases with τ (= 0 when $\tau=1$)

 \blacksquare Redistribution $\Omega^{ha}(\tau,v_{\omega})$

$$\Omega_r(\tau, v_\omega) = \frac{(1-\tau)^2}{n_0(\tau) - G} \frac{v_\omega}{1 - \rho_z^2}$$
$$= \mathbb{E}\left[U_c(c_0(\tau))\right] - U_c(C_0(\tau))$$

- Positive as long as $v_{\omega}>0$ and decreases with au (= 0 when au=1)
- \Rightarrow Redistribution gains of T are decreasing in τ

■ Redistribution $\Omega^{ha}(\tau, v_{\omega})$

$$\Omega_r(\tau, v_\omega) = \frac{(1-\tau)^2}{n_0(\tau) - G} \frac{v_\omega}{1 - \rho_z^2}$$
$$= \mathbb{E}\left[U_c(c_0(\tau))\right] - U_c(C_0(\tau))$$

- Positive as long as $v_{\omega}>0$ and decreases with τ (= 0 when $\tau=1$)
- \Rightarrow Redistribution gains of T are decreasing in τ
- \Rightarrow Negative optimal relationship between T and τ

■ Spending, no heterogeneity

 \blacksquare Spending, no heterogeneity, T>0 \Rightarrow lower au

■ Spending, idiosyncratic shocks

 \blacksquare Spending, idiosyncratic shocks, T>0 \Rightarrow lower τ

 \blacksquare A negative relationship between τ and T

lacktriangle A **negative** relationship between au and T

■ Formula: a good approximation!

Optimal plan with transfers Global solution of the static model

■ Generous transfers: T=0.3, regressive income taxes: $\tau=-0.08$

Optimal plan with transfers Global solution of the static model

■ Generous transfers: T = 0.3, regressive income taxes: $\tau = -0.08$

■ Average taxes are increasing, marginal taxes are decreasing

Taking stock

- Optimal negative relationship between progressivity and transfers
 - Due to both efficiency and redistribution
- The optimal plan looks very different when allowing for transfers
 - Break the link between average and marginal t&T rates

A Quantitative Model

Overview

- Rich quantitative model
 - Benchmark economy: standard Aiyagari with
 - + Realistic income risk: Gaussian mixture autoregressive (GMAR)
 - + Income concentration: Pareto tail
 - Extension: heterogeneous discount factors
- Calibration to the U.S.
- Optimize on the fiscal system parameters
 - Global algorithm: TikTak
 - Taking into account transitions

Households, firm, government

■ Household's value function with productivity z and assets a:

$$V\left(a,z\right) = \max_{c,a',n} \left\{ \frac{c^{1-\sigma}}{1-\sigma} - B\frac{n^{1+\varphi}}{1+\varphi} + \beta \mathbb{E}_{z'}\left[V\left(a',z'\right)|z\right] \right\}$$

s.t.

$$c + a' \le wzn + (1+r)a - \mathcal{T}(wzn, ra), \quad a' \ge 0$$

- Productivity z follows a stochastic process

Households, firm, government

■ Household's value function with productivity z and assets a:

$$V\left(a,z\right) = \max_{c,a',n} \left\{ \frac{c^{1-\sigma}}{1-\sigma} - B\frac{n^{1+\varphi}}{1+\varphi} + \beta \mathbb{E}_{z'}\left[V\left(a',z'\right)|z\right] \right\}$$

s.t.

$$c + a' \le wzn + (1+r)a - \mathcal{T}(wzn, ra), \quad a' \ge 0$$

- Productivity z follows a stochastic process
- Firm's static profit maximization:

$$\Pi = \max_{K,L} \left\{ L^{\alpha} K^{1-\alpha} - wL - (r+\delta)K \right\}$$

Households, firm, government

■ Household's value function with productivity z and assets a:

$$V\left(a,z\right) = \max_{c,a',n} \left\{ \frac{c^{1-\sigma}}{1-\sigma} - B\frac{n^{1+\varphi}}{1+\varphi} + \beta \mathbb{E}_{z'}\left[V\left(a',z'\right)|z\right] \right\}$$

s.t.

$$c + a' \le wzn + (1+r)a - \mathcal{T}(wzn, ra), \quad a' \ge 0$$

- Productivity z follows a stochastic process
- Firm's static profit maximization:

$$\Pi = \max_{K,L} \left\{ L^{\alpha} K^{1-\alpha} - wL - (r+\delta) K \right\}$$

■ Government's budget constraint:

$$G + (1+r)D = D + \int \mathcal{T}(wzn, ra) d\mu(a, z)$$

Fiscal system Taxes

 \blacksquare Flat capital tax: $\tau_k y_k$, with $\tau_k = 35\%$

Fiscal system Taxes

- Flat capital tax: $\tau_k y_k$, with $\tau_k = 35\%$
- Progressive labor tax: $\exp\left(\log(\lambda)\left(\frac{y_\ell}{\bar{y}}\right)^{-2\theta}\right)y_\ell$
 - λ is the tax rate at $y_\ell = \bar{y}$, θ captures the progressivity

Fiscal system Taxes

- Flat capital tax: $\tau_k y_k$, with $\tau_k = 35\%$
- Progressive labor tax: $\exp\left(\log(\lambda)\left(\frac{y_\ell}{\bar{y}}\right)^{-2\theta}\right)y_\ell$
 - λ is the tax rate at $y_{\ell} = \bar{y}$, θ captures the progressivity

- Interpretation: θ and τ on a roughly similar scale

Fiscal system Transfers

- New targeted-transfers function: $m \bar{y} \frac{2 \exp\left\{-\xi\left(\frac{y}{\bar{y}}\right)\right\}}{1+\exp\left\{-\xi\left(\frac{y}{\bar{y}}\right)\right\}}$
 - m is the level at y=0, ξ is the speed of phasing-out

Calibration Income process

■ Log-productivity follows a Gaussian Mixture Autoregressive Process

$$\log z_t =
ho \log z_{t-1} + \eta_t,$$
 $\eta_t \sim egin{cases} \mathcal{N}\left(\mu_1, \sigma_1^2
ight) & ext{with probability } p_1, \ \mathcal{N}\left(\mu_2, \sigma_2^2
ight) & ext{with probability } 1-p_1 \end{cases}$

Guvenen, Karahan, Ozkan, and Song (2021)

Calibration Income process

■ Log-productivity follows a Gaussian Mixture Autoregressive Process

$$\log z_t =
ho \log z_{t-1} + \eta_t,$$
 $\eta_t \sim egin{cases} \mathcal{N}\left(\mu_1, \sigma_1^2
ight) & ext{with probability } p_1, \ \mathcal{N}\left(\mu_2, \sigma_2^2
ight) & ext{with probability } 1-p_1 \end{cases}$

Guvenen, Karahan, Ozkan, and Song (2021)

- Pareto tail as in Hubmer, Krusell, and Smith (2020)
 - $\kappa=1.6$ Aoki and Nirei (2017)

Calibration Income process

■ Log-productivity follows a Gaussian Mixture Autoregressive Process

$$\log z_t =
ho \log z_{t-1} + \eta_t,$$
 $\eta_t \sim egin{cases} \mathcal{N}\left(\mu_1, \sigma_1^2
ight) & ext{with probability } p_1, \ \mathcal{N}\left(\mu_2, \sigma_2^2
ight) & ext{with probability } 1-p_1 \end{cases}$

Guvenen, Karahan, Ozkan, and Song (2021)

- Pareto tail as in Hubmer, Krusell, and Smith (2020)
 - $\kappa = 1.6$ Aoki and Nirei (2017)
- 5 parameters: $(\rho, p_1, \mu_1, \sigma_1, \sigma_2)$
 - Restriction: $\mu_2 = -\frac{p_1}{1-p_1}\mu_1 \Leftarrow \mathbb{E}\left(\eta_t\right) = 0$

Calibration

- Income process to match household income risk
 - Annual earnings growth distribution from PSID (1978-1992)
 - + Std deviation: 0.35, Skewness: -0.45, Kurtosis: 12, P9010: 0.64
 - And top-10 labor income share: 38%

Calibration

- Income process to match household income risk
 - Annual earnings growth distribution from PSID (1978-1992)
 - + Std deviation: 0.35, Skewness: -0.45, Kurtosis: 12, P9010: 0.64
 - And top-10 labor income share: 38%
- Fiscal parameters to match taxes and transfers per quintile
 - Taxes: $\theta=0.16$, $\lambda=0.12$
 - Transfers: m = 0.19, $\xi = 4.1$
 - Debt: D/Y=60%, residual $G/Y\approx14\%$

Calibration

- Income process to match household income risk
 - Annual earnings growth distribution from PSID (1978-1992)
 - + Std deviation: 0.35, Skewness: -0.45, Kurtosis: 12, P9010: 0.64
 - And top-10 labor income share: 38%
- Fiscal parameters to match taxes and transfers per quintile
 - Taxes: $\theta=0.16$, $\lambda=0.12$
 - Transfers: m=0.19, $\xi=4.1$
 - Debt: D/Y=60%, residual $G/Y\approx 14\%$
- Preferences: $\sigma = 2$, $\varphi^{-1} = 0.4$; β to match r = 2%

▶ More

Calibration Distributions

Income and Wealth Distributions

Data	Q1	Q2	Q3	Q4	Q5	Top 10
Labor income	4%	9%	14%	21%	52%	38%
Net worth	-1%	1%	3%	9%	88%	71%
Baseline	Q1	Q2	Q3	Q4	Q5	Top 10
Labor income	4%	9%	14%	20%	52%	38%
Net worth	0%	2%	8%	18%	72%	52%

Notes: Labor income shares by labor-income quintiles and wealth shares by wealth quintile, households aged 25-60. Data: SCF 2013.

■ Labor elasticity at the top-1%: 0.20

Calibration Fiscal system

Average Tax and Transfer Rates

Data	Q1	Q2	Q3	Q4	Q5
Tax rate	0%	10%	16%	20%	27%
Transfer rate	26%	3%	1%	0%	0%
Model	Q1	Q2	Q3	Q4	Q5
Tax rate	8%	11%	14%	17%	28%
Transfer rate	24%	4%	1%	0%	0%

Notes: Average tax rates paid and transfer rates received per income quintile. Data: CBO 2013, working-age households. Model: tax parameters: $\theta=0.16$, $\lambda=0.12$; transfer parameters: m=0.19, $\xi=4.1$.

▶ Graph

Optimal tax-and-transfer plan

■ The optimal plan features

Optimal tax-and-transfer plan

- The optimal plan features
 - Large transfers m=0.46, with a slow phase-out $\xi=1.94$

Optimal tax-and-transfer plan

■ The **optimal plan** features

- Large transfers m=0.46, with a slow phase-out $\xi=1.94$
- Moderate tax progressivity, close to the calibrated value $\theta=0.17$

- Graph for $y_k=0$ and y_ℓ normalized by \bar{y}

Optimal plan Average and marginal rates

Data	Q1	Q2	Q3	Q4	Q5
Tax rate	0%	10%	16%	20%	27%
Transfer rate	26%	3%	1%	0%	0%
Optimal	Q1	Q2	Q3	Q4	Q5
Tax rate	15%	21%	27%	31%	44%
Transfer rate	170%	58%	21%	6%	0%

- Transfer \$26k for lowest income hh, and \$7.4k for median.
- Much larger redistribution overall . . .

Optimal plan Average and marginal rates

Data	Q1	Q2	Q3	Q4	Q5
Tax rate Transfer rate	0% 26%	10% 3%	16% 1%	20% 0%	27% 0%
Total avg rate	-26%	-7%	15%	20%	27%
Optimal	Q1	Q2	Q3	Q4	Q5
Tax rate Transfer rate	15% 170%	21% 58%	27% 21%	31% 6%	44% 0%
Total avg rate	-155%	-37%	6%	25%	44%

- Transfer \$26k for lowest income hh, and \$7.4k for median.
- Much larger redistribution overall ... but "decreasing" marginal tax rates

Optimal plan Average and marginal rates

Data	Q1	Q2	Q3	Q4	Q5
Tax rate	0%	10%	16%	20%	27%
Transfer rate	26%	3%	1%	0%	0%
Total avg rate	-26%	-7%	15%	20%	27%
Optimal	Q1	Q2	Q3	Q4	Q5
Tax rate	15%	21%	27%	31%	44%
Transfer rate	170%	58%	21%	6%	0%
Total avg rate	-155%	-37%	6%	25%	44%
Marginal rate	62%	66%	62%	53%	51%

- Transfer \$26k for lowest income hh, and \$7.4k for median.
- Much larger redistribution overall ... but "decreasing" marginal tax rates

Optimal plan Transitions and Welfare

- o The economy shrinks...
 - + Output, labor supply, and capital fall
 - + Wages decline and interest rates increase
 - + A better allocation of hours worked

Optimal plan Transitions and Welfare

- o The economy shrinks...
 - + Output, labor supply, and capital fall
 - + Wages decline and interest rates increase
 - + A better allocation of hours worked

Optimal plan Transitions and Welfare

- o The economy shrinks...
 - + Output, labor supply, and capital fall
 - + Wages decline and interest rates increase
 - + A better allocation of hours worked

- o Welfare gains in CE terms: +9.64%!
 - + Larger welfare gains for the poor
 - + Decomposition: 70% insurance, 22% redistribution, 8% efficiency

- lacktriangle Optimal plan with lump-sum transfers ($\xi=0$)
 - Large transfers m=0.43 with almost flat taxes $\theta=0.03$

- lacktriangle Optimal plan with lump-sum transfers ($\xi=0$)
 - Large transfers m=0.43 with almost flat taxes $\theta=0.03$

With phase-out	Q1	Q2	Q3	Q4	Q5
Tax rate	15%	21%	27%	31%	44%
Transfer rate	170%	58%	21%	6%	0%
Lump-sum	Q1	Q2	Q3	Q4	Q5
Tax rate	56%	<mark>56%</mark>	57%	55%	58%
Transfer rate	181%	85%	53%	35%	13%

With phase-out	Q1	Q2	Q3	Q4	Q5
Total avg rate	-155%	-37%	6%	25%	44%
Marginal rate	62%	66%	62%	53%	51%
Lump-sum	Q1	Q2	Q3	Q4	Q5
Total avg rate Total marg rate	-125%	-29%	4%	20%	45%
	60%	61%	62%	63%	64%

lacksquare T/Y=29%, redistribution almost as large but flatter marginal rates

With phase-out	Q1	Q2	Q3	Q4	Q5
Total avg rate	-155%	-37%	6%	25%	44%
Marginal rate	62%	66%	62%	53%	51%
Lump-sum	Q1	Q2	Q3	Q4	Q5
Total avg rate Total marg rate	-125%	-29%	4%	20%	45%
	60%	61%	62%	63%	64%

- lacksquare T/Y=29%, redistribution almost as large but flatter marginal rates
- Welfare gains are 9.43%!

With phase-out	Q1	Q2	Q3	Q4	Q5
Total avg rate	-155%	-37%	6%	25%	44%
Marginal rate	62%	66%	62%	53%	51%
Lump-sum	Q1	Q2	Q3	Q4	Q5
Total avg rate Total marg rate	-125%	-29%	4%	20%	45%
	60%	61%	62%	63%	64%

- \blacksquare T/Y=29%, redistribution almost as large but flatter marginal rates
- Welfare gains are 9.43%! vs. 9.64% with phase-out
 - ⇒ Friedman was right!

With phase-out	Q1	Q2	Q3	Q4	Q5
Total avg rate	-155%	-37%	6%	25%	44%
Marginal rate	62%	66%	62%	53%	51%
Lump-sum	Q1	Q2	Q3	Q4	Q5
Total avg rate Total marg rate	-125%	-29%	4%	20%	45%
	60%	61%	62%	63%	64%

- \blacksquare T/Y=29%, redistribution almost as large but flatter marginal rates
- Welfare gains are 9.43%! vs. 9.64% with phase-out
 - \Rightarrow Friedman was right!...but marginal tax rates > 60%!

Trading-off transfers vs. tax progressivity

Trading-off transfers vs. tax progressivity

■ Larger transfers are associated with lower progressivity

- The left tail pins down m, the right tail pins down heta

Trading-off transfers vs. tax progressivity

■ Larger transfers are associated with lower progressivity

- The left tail pins down m, the right tail pins down θ
- Going further: risk and wealth

■ This paper: optimal design of the tax-and-transfer system

- This paper: optimal design of the tax-and-transfer system
- Main findings
 - Negative optimal relationship between transfers and tax progressivity
 - + For efficiency and redistribution concerns

- This paper: optimal design of the tax-and-transfer system
- Main findings
 - Negative optimal relationship between transfers and tax progressivity
 - + For efficiency and redistribution concerns
 - Transfers should be more generous, taxes should be higher. . .
 - $+\ldots$ but taxes should not be more progressive

- This paper: optimal design of the tax-and-transfer system
- Main findings
 - Negative optimal relationship between transfers and tax progressivity
 - + For efficiency and redistribution concerns
 - Transfers should be more generous, taxes should be higher...
 - + ... but taxes should not be more progressive
 - Large welfare gains even with monotonic marginal rates

- This paper: optimal design of the tax-and-transfer system
- Main findings
 - Negative optimal relationship between transfers and tax progressivity
 - + For efficiency and redistribution concerns
 - Transfers should be more generous, taxes should be higher...
 - + ... but taxes should not be more progressive
 - Large welfare gains even with monotonic marginal rates

Thank you!

Appendix

References

- Aoki, Shuhei and Makoto Nirei (2017). "Zipf's Law, Pareto's Law, and the Evolution of Top Incomes in the United States". American Economic Journal: Macroeconomics 9.3, pp. 36–71.
- Bakış, Ozan, Barış Kaymak, and Markus Poschke (2015). "Transitional dynamics and the optimal progressivity of income redistribution". <u>Review of Economic Dynamics</u> 18.3, pp. 679–693.
- Boar, Corina and Virgiliu Midrigan (2021). "Efficient Redistribution". Working Paper.
- Feenberg, Daniel, Axelle Ferriere, and Gaston Navarro (2020). "Evolution of Tax Progressivity in the United States: New Estimates and Welfare Implications". Working Paper.
- Findeisen, Sebastian and Dominik Sachs (2017). "Redistribution and insurance with simple tax instruments". Journal of Public Economics 146, pp. 58–78.
- Gouveia, Miguel and Robert P. Strauss (1994). "Effective federal individual income tax functions: An exploratory empirical analysis". National Tax Journal, pp. 317–339.
- Guner, Nezih, Remzi Kaygusuz, and Gustavo Ventura (2014). "Income taxation of US households: Facts and parametric estimates". Review of Economic Dynamics 17.4, pp. 559–581.
- Guner, Nezih, Martin Lopez-Daneri, and Gustavo Ventura (2016). "Heterogeneity and Government revenues: Higher taxes at the top?" <u>Journal of Monetary Economics</u> 80, pp. 69–85.

References (cont.)

- Guvenen, Fatih, Fatih Karahan, Serdar Ozkan, and Jae Song (2021). "What Do Data on Millions of US Workers Reveal about Life-Cycle Earnings Risk?" Forthcoming in Econometrica.
- Heathcote, Jonathan, Kjetil Storesletten, and Giovanni L. Violante (2014). "Consumption and labor supply with partial insurance: An analytical framework". The American Economic Review 104.7, pp. 2075–2126.
- (2017). "Optimal tax progressivity: An analytical framework".
 The Quarterly Journal of Economics 132.4, pp. 1693–1754.
- Heathcote, Jonathan and Hitoshi Tsujiyama (2021). "Optimal income taxation: Mirrlees meets Ramsey". Forthcoming in the Journal of Political Economy.
- Hubmer, Joachim, Per Krusell, and Anthony A. Smith (2020). "Sources of US wealth inequality: Past, present, and future". <u>NBER Macroeconomics Annual 2020, Volume 35</u>. University of Chicago Press.
- Kindermann, Fabian and Dirk Krueger (2021). "High Marginal Tax Rates on the Top 1%? Lessons from a Life Cycle Model with Idiosyncratic Income Risk". Forthcoming in the American Economic Journal: Macroeconomics.

References (cont.)

- Krueger, Dirk and Alexander Ludwig (2016). "On the optimal provision of social insurance: Progressive taxation versus education subsidies in general equilibrium".

 Journal of Monetary Economics 77, pp. 72–98.
- Krusell, Per and Anthony A. Smith Jr. (1998). "Income and wealth heterogeneity in the macroeconomy". Journal of Political Economy 106.5, pp. 867–896.
- Mirrlees, James A. (1971). "An exploration in the theory of optimum income taxation". The Review of Economic Studies 38.2, pp. 175–208.
- Peterman, William B. (2016). "The effect of endogenous human capital accumulation on optimal taxation". Review of Economic Dynamics 21, pp. 46–71.
- Piketty, Thomas and Emmanuel Saez (2003). "Income inequality in the United States, 1913–1998". The Quarterly Journal of Economics 118.1, pp. 1–41.
- (2007). "How progressive is the US federal tax system? A historical and international perspective". <u>Journal of Economic Perspectives</u> 21.1, pp. 3–24.
- Piketty, Thomas, Emmanuel Saez, and Gabriel Zucman (2017). "Distributional national accounts: methods and estimates for the United States". The Quarterly Journal of Economics 133.2, pp. 553–609.

References (cont.)

Ramsey, Frank P. (1927). "A Contribution to the Theory of Taxation". <u>The Economic Journal</u> 37.145, pp. 47–61.

Splinter, David (2020). "US Tax Progressivity and Redistribution". National Tax Journal 73.4, pp. 1005–1024.

CBO Data: Components of Taxes and Transfers

- Broad measure of market income for non-elderly households
 - Labor and capital income
 - Includes all corporate and payroll taxes

Taxes

- Individual income tax (including tax credits) and payroll taxes
- Corporate income tax and excise taxes

■ Transfers

- SNAP and other means-tested transfers (TANF, etc.)
- Excluding SSI and Medicaid

Loglinear tax function Description

- A loglinear tax scheme: $\mathcal{T}(y) = y \lambda y^{1-\tau}$
- Tax progressivity is captured by τ and level by λ

A tractable environment calibration

- Preference parameters: $\varphi^{-1}=0.4$, B to match $n_0=0.3$
- Fiscal parameters: $\tau=0.18,\,G/Y=0.15$
- Idiosyncratic risk: $\rho_z=0.935,\,v_\omega$ to match $\mathbb{V}[\log c]$

Transfers First-best

 \blacksquare Negative optimal relationship between T and τ

Transfers Heterogeneous agents

 \blacksquare Negative optimal relationship between T and τ

Equilibrium Definition

A stationary recursive competitive equilibrium is given by

- lacktriangle Households' value functions $\{V\}$ and policies $\{c,a',n\}$. Firm's policies $\{L,K\}$.
- Government's policies $\{G, D, \lambda, \theta, m, \xi\}$
- \blacksquare A measure μ

such that given prices $\{r, w\}$

- Households and the firm solve their respective problems.
- The government's budget constraint holds.
- Markets clear
 - Capital market clears: $K+D=\int_{\mathcal{B}}a'(a,z)d\mu(a,z)$
 - Labor market clears: $L = \int_{\mathcal{B}} z n(a,z) d\mu(a,z)$
 - Goods market clears: $Y=\int_{\mathcal{B}}c(a,z)d\mu(a,z)+\delta K+G$
- \blacksquare Measure μ is stationary

$$\mu(a', z') = \int \mathbb{I}\{a'(a, z) = a'\}\pi_z(z'|z)d\mu(a, z)$$

Fiscal system Taxes

■ New progressive labor tax resembles HSV except at the bottom

◆ Back

Calibration

- Income process to match household income risk
 - Annual earnings growth distribution from PSID (1978-1992)
 - + Std deviation: 0.35, Skewness: -0.45, Kurtosis: 12, P9010: 0.64
 - $p_1 = 0.85$, $\mu_1 = 0.016$ ($\mu_2 = -0.091$), $\sigma_1 = 0.15$, $\sigma_2 = 0.63$
 - Persistence ρ =0.935 to match the top-10 labor income share
- Fiscal parameters to match taxes and transfers per quintile
 - Taxes: $\theta=0.16$, $\lambda=0.12$
 - Transfers: m = 0.19, $\xi = 4.1$
- Preferences: $\sigma = 2$, $\varphi^{-1} = 0.4$; Production: $\alpha = 0.64$, $\delta = 0.08$
- Calibrate ($\beta=0.962, B=85, D=0.59$) to match $r=2\%, \bar{h}=0.3,$ D/Y=60% ($\Rightarrow G/Y\approx 14\%$)

Calibration Fiscal system

■ Marginal rates by quintile: 33%, 24%, 21%, 23%, 31%

◆ Back

Transition to the optimal system

- Convergence achieved after ≈ 40 years

Transition to the optimal system

- The distribution of hours shift to the left

Optimal tax-and-transfer system ce

■ Welfare gains: +9.62%, 79% households would benefit

◀ Back

How important are departures from normality?

■ The optimal system is more generous with AR(1) shocks!...

■ Roughly similar progressivity.

◆ Back

Heterogeneous Beta

■ Recalibration with heterogeneous stochastic discount factors Krusell and Smith (1998)

■ Larger transfers, robust m- θ relationship

Optimal loglinear plan

- Steady state: $\tau = 0.40$, with transitions: $\tau = 0.49$
- Consumption equivalent: +5.08%

Steady-state Benchmark calibration

■ Optimal plan without transition:

$$-\theta = 0.03, m = 0.36, \xi = 0$$

